Quasi-contractions on symmetric and cone symmetric spaces
نویسندگان
چکیده
منابع مشابه
Generalized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملCorrection: Nonlinear quasi-contractions in non-normal cone metric spaces
In the note we correct some errors that appeared in the article (Jiang and Li in Fixed Correction Upon critical examination of the main results and their proofs in [], we note some critical errors under the conditions of the main theorem and its proof in our article []. In this note, we would like to supplement some essential conditions, which will ensure that the mapping B is well defined, t...
متن کاملWeakly Symmetric Spaces and Bounded Symmetric Domainshieu
In this paper, new examples of weakly symmetric spaces in the sense of A. Selberg 14] are constructed. Let G be a connected, simply-connected, simple Lie group of hermitian type and K a maximal compactly embedded subgroup of G such that D = G=K is an irreducible classical bounded symmetric domain. Let G 1 and D 1 be circle extensions of G and D, respectively. The factor of automorphy induces a ...
متن کاملRigidity of quasi-isometries for symmetric spaces and Euclidean buildings
for all x ∈ X . Quasi-isometries occur naturally in the study of the geometry of discrete groups since the length spaces on which a given finitely generated group acts cocompactly and properly discontinuously by isometries are quasi-isometric to one another [Gro]. Quasi-isometries also play a crucial role in Mostow’s proof of his rigidity theorem: the theorem is proved by showing that equivaria...
متن کاملQuasi-flats and Rigidity in Higher Rank Symmetric Spaces
In this paper we use elementary geometrical and topological methods to study some questions about the coarse geometry of symmetric spaces. Our results are powerful enough to apply to noncocompact lattices in higher rank symmetric spaces, such as SL(n,Z), n ≥ 3 : Theorem 8.1 is a major step towards the proof of quasiisometric rigidity of such lattices ([E]). We also give a different, and effecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Journal of Mathematical Analysis
سال: 2011
ISSN: 1735-8787
DOI: 10.15352/bjma/1313362978